Phoneme Classification Using Naive Bayes Classifier in Reconstructed Phase Space
نویسندگان
چکیده
A novel method for classifying speech phonemes is presented. Unlike traditional cepstral based methods, this approach uses histograms of reconstructed phase spaces. A Naïve Bayes classifier uses the probability mass estimates for classification. The approach is verified using isolated fricative, vowel, and nasal phonemes from the TIMIT corpus. The results show that a reconstructed phase space approach is a viable method for classification of phonemes, with the potential for use in a continuous speech recognition system.
منابع مشابه
A New Approach for Text Documents Classification with Invasive Weed Optimization and Naive Bayes Classifier
With the fast increase of the documents, using Text Document Classification (TDC) methods has become a crucial matter. This paper presented a hybrid model of Invasive Weed Optimization (IWO) and Naive Bayes (NB) classifier (IWO-NB) for Feature Selection (FS) in order to reduce the big size of features space in TDC. TDC includes different actions such as text processing, feature extraction, form...
متن کاملPhoneme Classification over the Reconstructed Phase Space Using Pca
Although isolated phoneme classification using features from time-domain phase space reconstruction has been investigated recently, the best representation of feature vectors for the discriminability over phoneme classes is still an open question. This paper applies Principal Component Analysis (PCA) to feature vectors from the reconstructed phase space. By using PCA projection, the basis of th...
متن کاملPhoneme Classification over the Reconstructed Phase Space
Although isolated phoneme classification using features from time-domain phase space reconstruction has been investigated recently, the best representation of feature vectors for the discriminability over phoneme classes is still an open question. This paper applies Principal Component Analysis (PCA) to feature vectors from the reconstructed phase space. By using PCA projection, the basis of th...
متن کاملPhoneme classification over the reconstructed phase space using principal component analysis
Although isolated phoneme classification using features from time-domain phase space reconstruction has been investigated recently, the best representation of feature vectors for the discriminability over phoneme classes is still an open question. This paper applies Principal Component Analysis (PCA) to feature vectors from the reconstructed phase space. By using PCA projection, the basis of th...
متن کاملLearning Naive Bayes Classifier from Noisy Data
Classification is one of the major tasks in knowledge discovery and data mining. Naive Bayes classifier, in spite of its simplicity, has proven surprisingly effective in many practical applications. In real datasets, noise is inevitable, because of the imprecision of measurement or privacy preserving mechanisms. In this paper, we develop a new approach, LinEar-Equation-based noise-aWare bAYes c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002